For shaft parts, 45 steel has been widely used due to its favorable mechanical properties and low cost. However, the relatively low wear resistance of 45 steel limits its application. In this work, high-entropy alloy of FeCrCoMnSi x (x = 0, 0.3, 0.6, 0.9, 1) coatings were prepared on the surface of a 45 steel substrate using laser cladding technology to improve the wear performance of 45 steel. The effect of the Si element on the microstructure and tribological property of these coatings is investigated. The results show that the structure of FeCrCoMn coatings is mainly an FCC + HCP dual-phase solid solution, grown in equiaxial crystals. When a small amount of Si (x = 0.3) is added, the BCC phase is generated in the coating; meanwhile, the microstructure is transformed into the divorced eutectic character. When the content of Si is x = 0.6, the eutectic structure is promoted, and the microstructure is refined and becomes denser. When the content of Si increases to x = 0.9 and 1.0, the metal silicate phase containing Mn and Cr is formed due to the precipitation of supersaturated solid solution. At the same time, the microstructure is transformed into dendritic crystals due to the composition super-cooling effect by the excessive Si element, inducing serious element segregation. The hardness of FeCrCoMnSi x high-entropy alloy coatings increases to 425.8 HV when the Si content is 0.6 under the synergistic effect of the solid-solution and dense eutectic structure. The friction and wear analysis shows that the friction and wear mechanisms of the coating are mainly abrasive wear and oxidative wear. The coefficient of friction and the wear rate of the FeCrCoMnSi x high-entropy alloy coating decreases to 0.202 and 4.06 × 10 −5 mm 3/N·m, respectively, when the content of Si is 0.6 due to the dense microstructure and high hardness. The above studies prove that the presence of Si in the FeCrCoMnSi 0.6 high-entropy alloy coating induces a refined eutectic microstructure and improves the coating’s anti-wear properties by increasing hardness and decreasing the coefficient of friction.
周老师: 13321314106
王老师: 17793132604
邮箱号码: lub@licp.cas.cn