Green self-powered devices based on biodegradable materials have attracted widespread attention. Here, we propose the construction of the transient biotriboelectric nanogenerator (TENG) using green-in-green bionanocompoites. The green-in-green nanocomposites, cellulose nanocrystal (CNC)/polyhydroxybutyrate (PHB), are prepared with a high-pressure molding method. The CNC promotes the degradation and enhances the dielectric constant of CNC/PHB. It further allows for the significant improvement of the triboelectric output of CNC/PHB-based TENG. The voltage output and current output of CNC/PHB-based TENG are 5.7 and 12.5 times higher than those of pristine PHB-based TENG, respectively. Also, the bio-TENG exhibits admirable signal stability in over 20000 cycles. Despite the high hardness of CNC/PHB, a soft but simple-structured arch sensor is successfully assembled using CNC/PHB-based TENG. It can attain the precise real-time monitoring of various human motions. This study may provide new insights into the design/fabrication of green functional materials, and initiate the next wave of innovations in eco-friendly self-powered devices.
周老师: 13321314106
王老师: 17793132604
邮箱号码: lub@licp.cas.cn