微/纳摩擦学
50625515
2000000
西南交通大学
CN-NSFC
2007-01-01
CHN
国家杰出青年科学基金
钱林茂
2010-12-31
【中文摘要】微观磨损不仅是微机电系统应用中的关键问题,更已成为纳米制造的共性基础问题。本项目围绕微观磨损的现象、机理、防护和应用开展研究,取得如下进展:(1) 摩擦诱导纳米制造:阐明了单晶硅表面摩擦诱导纳米凸结构的形成机制,提出了基于针尖扫描的摩擦诱导纳米加工的新方法,该方法不仅可以方便地在绝缘样品表面加工各种凸结构,而且可以结合腐蚀加工各种复杂纳米结构,在微纳制造领域有广阔的应用前景;(2) 单晶硅的纳动磨损:揭示了载荷和界面粘着对纳动损伤的影响规律,建立了表面亲疏水性对纳动运行和损伤的作用机制,提出了单晶硅表面抗纳动损伤的有效措施,阐明了摩擦化学反应对单晶硅表面微观磨损的影响机制;(3) 镍钛合金微磨损机理:揭示了镍钛合金相变相关的微磨损机理,提出了镍钛合金抗微动磨损的有效措施,拓宽了其在微机电系统和生物医疗器械领域中的应用范围;(4) 生物-纳米摩擦学研究:揭示了牙齿和指甲的微观结构与其力学和摩擦学性能的构性关系,开辟了微纳器件仿生设计的新思路。相关研究符合国家高新科技发展的重大战略需求,其成果不仅可以丰富纳米制造的基础理论,而且也有助于推动微机电系统的实用化进程。
【英文摘要】Microwear is not only the key problem in the application of microelectromechanical systems (MEMS), but also the basic theory problem in nanofabrication. The research of the project was focused on the phenomenon, mechanism, protection and application of microwear. The main progress can be summarized as follows. (1) Friction-induced nanofibrication: Without applying any voltage, the nanofabrication is completed by sliding an AFM diamond tip on sample surface under a given normal load. Nanostructured patterns, such as nanolines, nanodots or nanowords, can be fabricated on the target surface. TEM analyses suggest that the friction-induced hillock is composed of silicon oxide, amorphous silicon and deformed silicon structures. Since the fabrication can also be realized on electrical insulators or oxide surfaces, such as quartz and glass, the friction-induced method points out a new route in fabricating nanostructures on demand. (2) The nanofretting of monocrystalline silicon: Both the load, adhesion and the surface hydrophilicity show strong effects on the nanofretting wear of silicon. The hard ultrathin coating could effectively protect the silicon substrate from nanofretting damage. Compared to mechanical interaction, the tribochemical reaction played an more important role in the microwear of silicon. (3) The microwear of NiTi alloys: Both the martensite phase transition and reorientation can increase the elastic accommodation ability and wear resistance of NiTi shape memory alloys (SMA). A coating has been successfully developed to restrain the release of nickel ion and improve the wear behavior of NiTi SMA. (4) Study on bio-nanotribology: With the increase in the normal load during scratching, the size of enamel hydroxyapatite (HA) particles was found to gradually decrease from 50 nm to 20 nm. After remineralized in the artificial saliva solution, the size of particles on the surface was found to increase to 200 nm and the scratching damage could be repaired to some extent. The results may provide useful suggestions on the development of dental restorative materials and biomimetic materials. In summary, the investigation of the project can not only enrich and consummate the theoretical system of nanofabrication, but also accelerate the application progress of MEMS.
【结题摘要】微观磨损不仅是微机电系统应用中的关键问题,更已成为纳米制造的共性基础问题。本项目围绕微观磨损的现象、机理、防护和应用开展研究,取得如下进展:(1) 摩擦诱导纳米制造:阐明了单晶硅表面摩擦诱导纳米凸结构的形成机制,提出了基于针尖扫描的摩擦诱导纳米加工的新方法,该方法不仅可以方便地在绝缘样品表面加工各种凸结构,而且可以结合腐蚀加工各种复杂纳米结构,在微纳制造领域有广阔的应用前景;(2) 单晶硅的纳动磨损:揭示了载荷和界面粘着对纳动损伤的影响规律,建立了表面亲疏水性对纳动运行和损伤的作用机制,提出了单晶硅表面抗纳动损伤的有效措施,阐明了摩擦化学反应对单晶硅表面微观磨损的影响机制;(3) 镍钛合金微磨损机理:揭示了镍钛合金相变相关的微磨损机理,提出了镍钛合金抗微动磨损的有效措施,拓宽了其在微机电系统和生物医疗器械领域中的应用范围;(4) 生物-纳米摩擦学研究:揭示了牙齿和指甲的微观结构与其力学和摩擦学性能的构性关系,开辟了微纳器件仿生设计的新思路。相关研究符合国家高新科技发展的重大战略需求,其成果不仅可以丰富纳米制造的基础理论,而且也有助于推动微机电系统的实用化进程。