Scalable one-step wet-spinning of triboelectric fibers for large-area power and sensing textiles

Textile-based electronic devices have attracted increasing interest in recent years due to their wearability, breathability, and comfort. Among them, textile-based triboelectric nanogenerators (T-TENGs) exhibit remarkable advantages in mechanical energy harvesting and self-powered sensing. However, there are still some key challenges to the development and application of triboelectric fibers (the basic unit of T-TENG). Scalable production and large-scale integration are still significant factors hindering its application. At the same time, there are some difficulties to overcome in the manufacturing process, such as achieving good stretchability and a quick production, overcoming incompatibility between conductive and triboelectric materials. In this study, triboelectric fibers are produced continuously by one-step coaxial wet spinning. They are only 0.18 mm in diameter and consist of liquid metal (LM) core and polyurethane (PU) sheath. Due to the good mechanical properties between them, there is no interface incompatibility of the triboelectric fibers. In addition, triboelectric fibers can be made into large areas of T-TENG by means of digital embroidery and plain weave. The T-TENGs can be used for energy harvesting and self-powered sensing. When they are fixed on the forearm can monitor various strokes in badminton. This work provides a promising strategy for the large-scale fabrication and large-area integration of triboelectric fibers, and promotes the development of wearable T-TENGs.

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

润滑集