Effect of Metallic Coatings on the Wear Performance and Mechanism of 30CrMnSiNi2A Steel

Abstract : The finger lock structure of aircraft landing gear is prone to wear and failure during repeated locking and unlocking processes, which is disastrous for the service safety of the aircraft. At present, the commonly used material for finger locks in the industry is 30CrMnSiNi2A, which has a short wear life and high maintenance costs. It is crucial to develop effective methods to improve the wear resistance of 30CrMnSiNi2A finger locks. This work explores the wear resistance and wear mechanisms of different metallic coatings such as chromium, nickel, and cadmium–titanium on the surface of a 30CrMnSiNi2A substrate. The effects of load and wear time on the wear behavior are also discussed. The results indicated that the wear resistance of the chromium coating was the maximum. When the load was 80 N and 120 N, the wear mechanisms were mainly oxidation and adhesive. For greater loads, the wear mechanism of the coating after failure was mainly abrasive and oxidation, and the wear was extremely severe. When the load was 80 N, for a greater loading time, the wear mechanisms were mainly oxidation and adhesive. Keywords: 30CrMnSiNi2A; coating; Cr; wear resistance Abstract : The finger lock structure of aircraft landing gear is prone to wear and failure during repeated locking and unlocking processes, which is disastrous for the service safety of the aircraft. At present, the commonly used material for finger locks in the industry is 30CrMnSiNi2A, which has a short wear life and high maintenance costs. It is crucial to develop effective methods to improve the wear resistance of 30CrMnSiNi2A finger locks. This work explores the wear resistance and wear mechanisms of different metallic coatings such as chromium, nickel, and cadmium–titanium on the surface of a 30CrMnSiNi2A substrate. The effects of load and wear time on the wear behavior are also discussed. The results indicated that the wear resistance of the chromium coating was the maximum. When the load was 80 N and 120 N, the wear mechanisms were mainly oxidation and adhesive. For greater loads, the wear mechanism of the coating after failure was mainly abrasive and oxidation, and the wear was extremely severe. When the load was 80 N, for a greater loading time, the wear mechanisms were mainly oxidation and adhesive. Keywords: 30CrMnSiNi2A; coating; Cr; wear resistance Abstract : The finger lock structure of aircraft landing gear is prone to wear and failure during repeated locking and unlocking processes, which is disastrous for the service safety of the aircraft. At present, the commonly used material for finger locks in the industry is 30CrMnSiNi2A, which has a short wear life and high maintenance costs. It is crucial to develop effective methods to improve the wear resistance of 30CrMnSiNi2A finger locks. This work explores the wear resistance and wear mechanisms of different metallic coatings such as chromium, nickel, and cadmium–titanium on the surface of a 30CrMnSiNi2A substrate. The effects of load and wear time on the wear behavior are also discussed. The results indicated that the wear resistance of the chromium coating was the maximum. When the load was 80 N and 120 N, the wear mechanisms were mainly oxidation and adhesive. For greater loads, the wear mechanism of the coating after failure was mainly abrasive and oxidation, and the wear was extremely severe. When the load was 80 N, for a greater loading time, the wear mechanisms were mainly oxidation and adhesive. Keywords: 30CrMnSiNi2A; coating; Cr; wear resistance The finger lock structure of aircraft landing gear is prone to wear and failure during repeated locking and unlocking processes, which is disastrous for the service safety of the aircraft. At present, the commonly used material for finger locks in the industry is 30CrMnSiNi2A, which has a short wear life and high maintenance costs. It is crucial to develop effective methods to improve the wear resistance of 30CrMnSiNi2A finger locks. This work explores the wear resistance and wear mechanisms of different metallic coatings such as chromium, nickel, and cadmium–titanium on the surface of a 30CrMnSiNi2A substrate. The effects of load and wear time on the wear behavior are also discussed. The results indicated that the wear resistance of the chromium coating was the maximum. When the load was 80 N and 120 N, the wear mechanisms were mainly oxidation and adhesive. For greater loads, the wear mechanism of the coating after failure was mainly abrasive and oxidation, and the wear was extremely severe. When the load was 80 N, for a greater loading time, the wear mechanisms were mainly oxidation and adhesive. Keywords: 30CrMnSiNi2A; coating; Cr; wear resistance Keywords: 30CrMnSiNi2A; coating; Cr; wear resistance Keywords:

相关文章

  • Fretting wear behavior of different surface modified layers of a tight fit spline used for a gauge-changeable railway vehicle
    [Yanping Ren, Honglei Nie, Yiting Dong, Xiaojun Xu, Jifan He, Zhongwen Li, Zhenbing Cai, Huoming Shen, Minhao Zhu]
  • Improved dry sliding wear behavior of TA1 titanium by low-temperature plasma nitriding by CCPN method
    [Jiaqin Liu, Zhiguo Wang, Zhanpeng Ye, Wei Jin, Zhilei Chen, Yin Hu, Jiahong Wu, Daoming Chen, Bin Bai, Xiaofang Wang, Zhenbing Cai, Kezhao Liu]
  • Improved dry sliding wear behavior of TA1titanium by low-temperature plasma nitriding by CCPN method
    [Jiaqin Liu, Zhiguo Wang, Zhanpeng Ye, Wei Jin, Zhilei Chen, Yin Hu, Jiahong Wu, Daoming Chen, Bin Bai, Xiaofang Wang, Zhenbing Cai, Kezhao Liu]
  • 成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    润滑集