Microstructure and Properties of CoCrNi/Nano-TiC/Micro-TiB2 Composite Coatings Prepared via Laser Cladding

Laser cladding was used to prepare CoCrNi-xTiC-xTiB2 (x = 0, 5, 15 wt.%) composite coatings on 316 L stainless steel. Then, ceramic mass fraction effects on the microstructure and properties were investigated. Results show viable metallurgical bonding between the coating and the substrate, with no apparent pores or cracks. The addition of ceramics transformed the coating phase from a single-phase face-centered cubic (FCC) to a multi-phase FCC+TiC+TiB2. TiC and TiB2 increased the hardness of the CoCrNi-xTiC-xTiB2 coating from 209.71 HV to 494.77 HV by grain refinement and diffusion strengthening. The substrate wear loss was 0.0088 g, whereas the CoCrNi-xTiC-xTiB2 (x = 15%) coating wear loss was only 0.0012 g. Moreover, the overall wear mechanism of the coating was changed: the substrate wear mechanism was used for abrasive wear, adhesive wear and fatigue wear, and the coating with the addition of 15 wt.% nano-TiC and 15 wt.% micro-TiB2 was the wear mechanism for pitting fatigue wear.

相关文章

  • Atomic-engineered gradient tunable solid-state metamaterials
    [Meltem Yilmaz, Libo Cheng, Bin Feng, Yuichi Ikuhara, Chuchu Yang, Naoya Shibata, Xinbin Cheng, Rong Zhao, Hao Wang, Albertus Denny Handoko, Cheng-Wei Qiu, Joel K. W. Yang, Zhiyuan Yan, Chong Tow Chong, Ghim Wei Ho, Zhiyong Zhang, Weikang Wu]
  • Mussel-Inspired, Self-Healing, Highly Effective Fully Polymeric Fire-Retardant Coatings Enabled by Group Synergy
    [Zhewen Ma, Jiabing Feng, Siqi Huo, Ziqi Sun, Serge Bourbigot, Hao Wang, Jiefeng Gao, Long-Cheng Tang, Wei Zheng, Pingan Song]
  • Analytical and Experimental Investigation of Windage–Churning Behavior in Spur, Bevel, and Face Gears
    [Yu Dai, Caihua Yang, He Liu, Xiang Zhu]
  • 成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    润滑集