Dynamic behavior of hydrostatic squeeze film dampers fed through four capillary restrictors with micropolar lubricant

Design/methodology/approach The modified version of Reynolds equation is solved numerically by the finite differences and the Gauss–Seidel methods to determine the pressure field generated on the hydrostatic bearing flat pads. In the first step, the effects of the pad dimension ratios on the stiffness and damping coefficients are investigated. In the second step, the damping factor is evaluated with respect to the micropolar properties. Findings The analysis revealed that the hydrostatic squeeze film dampers lubricated with micropolar lubricants produces the maximum damping factor for characteristic length of micropolar lubricant less than 5, while the same bearing operating with Newtonian lubricants reaches its maximum damping factor at eccentricity ratios larger than 0.4. Originality/value The results obtained show that the effects of micropolar lubricants on the dynamic performances are predominantly affected by the pad geometry and eccentricity ratio.

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

润滑集