Cationic Engineered Nanodiamonds for Efficient Antibacterial Surface with Strong Wear Resistance

The spread of diseases caused by bacterial adhesion and immobilization in public places constitutes a serious threat to public health. Prevention of bacteria spread by the construction of an antibacterial surface takes precedence over post-infection treatment. Herein, we demonstrate an effective antibacterial surface with strong wear resistance by constructing cationic engineered nanodiamonds (C-NDs). The C-NDs with positive surface potentials interact effectively with bacteria through electrostatic interactions, where the C-NDs act on the phospholipid bilayer and lead to bacterial membrane collapse and rupture through hydrogen bonding and residual surface oxygen-containing reactive groups. In this case, bactericidal rate of 99.99% and bacterial biofilm inhibition rate of more than 80% can be achieved with the C-NDs concentration of 1 mg/mL. In addition, the C-NDs show outstanding antibacterial stability, retaining over 87% of the antibacterial effect after stimulation by adverse environments of heat, acid, and external abrasion. Therefore, an antibacterial surface with high wear resistance obtained by integrating C-NDs with commercial plastics has been demonstrated. The antibacterial surface with a mass fraction of 1 wt% C-NDs improved abrasion resistance by 3981 times, with 99% killing of adherent bacteria. This work provides an effective strategy for highly efficient antibacterial wear-resistant surface, showing great practical applications in public health environments.

相关文章

  • Polymer modulated ink rheology and compatibility enables homogenized printing of a Spiro-OMeTAD transport layer for scalable and stable perovskite solar modules
    [Jin Li, Baojing Fan, Xukai Liu, Yuxin Liu, Zhi Xing, Chenxiang Gong, Zhaoyang Chu, Linfeng Li, Xiangchuan Meng, Rui Guo, Fuyi Wang, Xiaotian Hu, Yiwang Chen]
  • Biomimetic Bacterial Capsule for Enhanced Aptamer Display and Cell Recognition
    [Xuelin Wang, Bei Jia, Kyungsene Lee, Brandon Davis, Connie Wen, Yixun Wang, Hong Zheng, Yong Wang]
  • Mechanical and tribological properties of FDM-printed polyamide
    [Chengshuo Wang, Yanzhao He, Zhengwei Lin, Xiangfei Zhao, Chufeng Sun, Rui Guo, Xiaolong Wang, Feng Zhou]
  • 成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    润滑集