Superhydrophobic surfaces (SHSs) have possibilities for achieving significantly reduced solid–liquid frictional drag in the marine sector due to their excellent water-repelling properties. Although the stability of SHSs plays a key role in drag reduction, little consideration was given to the effect of extreme environments on the ability of SHSs to achieve drag reduction underwater, particularly when subjected to acidic conditions. Here, we propose interconnected microstructures to protect superhydrophobic coatings with the aim of enhancing the stability of SHSs in extreme environments. The stability of armored SHSs (ASHSs) was demonstrated by the contact angle and bounce time of droplets on superhydrophobic surfaces treated by various methods, resulting in an ASHS surface with excellent stability under extreme environmental conditions. Additionally, inspired by microstructures protecting superhydrophobic nanomaterials from frictional wear, the armored superhydrophobic spheres (ASSPs) were designed to explain from theoretical and experimental perspectives why ASSPs can achieve sustainable drag reduction and demonstrate that the ASSPs can achieve drag reduction of over 90.4% at a Reynolds number of 6.25 × 104 by conducting water entry experiments on spheres treated in various solutions. These studies promote a fundamental understanding of what drives the application of SHSs under extreme environmental conditions and provide practical strategies to maximize frictional drag reduction.
周老师: 13321314106
王老师: 17793132604
邮箱号码: lub@licp.cas.cn