Enhancing the mechanical properties of conventional ceramic particles-reinforced aluminum (Al 1060) metal matrix composites (AMCs) with lower detrimental phases is difficult. In this research work, AMCs are reinforced with graphene nanosheet (GNS) and hybrid reinforcement (GNS combined with 20% SiC, synthesized by shift-speed ball milling (SSBM), and further fabricated by two-pass friction stir processing (FSP). The effect of GNS content and the addition of SiC on the microstructure and mechanical properties of AMCs are studied. The microstructure, elemental, and phase composition of the developed composite are examined using SEM, EDS, and XRD techniques, respectively. Mechanical properties such as hardness, wear, and tensile strength are analyzed. The experimental results show that the GNS and the SiC are fairly distributed in the Al matrix via SSBM, which is beneficial for the mechanical properties of the composites. The maximum tensile strength of the composites is approximately 171.3 MPa in AMCs reinforced by hybrid reinforcements. The tensile strength of the GNS/Al composites increases when the GNS content increases from 0 to 1%, but then reduces with the further increase in GNS content. The hardness increases by 2.3%, 24.9%, 28.9%, and 41.8% when the Al 1060 is reinforced with 0.5, 1, 2% GNS, and a hybrid of SiC and GNS, respectively. The SiC provides further enhancement of the hardness of AMCs reinforced by GNS. The coefficient of friction decreases by about 7%, 13%, and 17% with the reinforcement of 0.5, 1, and 2% GNS, respectively. Hybrid reinforcement has the lowest friction coefficient (0.41). The decreasing friction coefficient contributes to the self-lubrication of GNSs, the reduction in the contact area with the substrate, and the load-bearing ability of ceramic particles. According to this study, the strengthening mechanisms of the composites may be due to thermal mismatch, grain refinement, and Orowan looping. In summary, such hybrid reinforcements effectively improve the mechanical and tribological properties of the composites. Abstract Enhancing the mechanical properties of conventional ceramic particles-reinforced aluminum (Al 1060) metal matrix composites (AMCs) with lower detrimental phases is difficult. In this research work, AMCs are reinforced with graphene nanosheet (GNS) and hybrid reinforcement (GNS combined with 20% SiC, synthesized by shift-speed ball milling (SSBM), and further fabricated by two-pass friction stir processing (FSP). The effect of GNS content and the addition of SiC on the microstructure and mechanical properties of AMCs are studied. The microstructure, elemental, and phase composition of the developed composite are examined using SEM, EDS, and XRD techniques, respectively. Mechanical properties such as hardness, wear, and tensile strength are analyzed. The experimental results show that the GNS and the SiC are fairly distributed in the Al matrix via SSBM, which is beneficial for the mechanical properties of the composites. The maximum tensile strength of the composites is approximately 171.3 MPa in AMCs reinforced by hybrid reinforcements. The tensile strength of the GNS/Al composites increases when the GNS content increases from 0 to 1%, but then reduces with the further increase in GNS content. The hardness increases by 2.3%, 24.9%, 28.9%, and 41.8% when the Al 1060 is reinforced with 0.5, 1, 2% GNS, and a hybrid of SiC and GNS, respectively. The SiC provides further enhancement of the hardness of AMCs reinforced by GNS. The coefficient of friction decreases by about 7%, 13%, and 17% with the reinforcement of 0.5, 1, and 2% GNS, respectively. Hybrid reinforcement has the lowest friction coefficient (0.41). The decreasing friction coefficient contributes to the self-lubrication of GNSs, the reduction in the contact area with the substrate, and the load-bearing ability of ceramic particles. According to this study, the strengthening mechanisms of the composites may be due to thermal mismatch, grain refinement, and Orowan looping. In summary, such hybrid reinforcements effectively improve the mechanical and tribological properties of the composites. Keywords: friction stir processing; aluminum matrix composites; silicon carbide; graphene nanosheets; microstructure
周老师: 13321314106
王老师: 17793132604
邮箱号码: lub@licp.cas.cn