The imbalance between endogenous and exogenous healing is the fundamental reason for the poor tendon healing. In this study, a Janus patch was developed to promote endogenous healing and inhibit exogenous healing, leading to improved tendon repair. The upper layer of the patch is a poly(dl-lactide-co-glycolide)/polycaprolactone (PLGA/PCL) nanomembrane (PMCP-NM) modified with poly(2-methylacryloxyethyl phosphocholine) (PMPC), which created a lubricated and antifouling surface, preventing cell invasion and mechanical activation. The lower layer is a PLGA/PCL fiber membrane loaded with fibrin (Fb) (Fb-NM), serving as a temporary chemotactic scaffold to regulate the regenerative microenvironment. In vitro, the Janus patch effectively reduced 92.41% cell adhesion and 79.89% motion friction. In vivo, the patch inhibited tendon adhesion through the TGF-β/Smad signaling pathway and promoted tendon maturation. This Janus patch is expected to provide a practical basis and theoretical guidance for high-quality soft tissue repair.
周老师: 13321314106
王老师: 17793132604
邮箱号码: lub@licp.cas.cn