The Effect of Ultrafine-Grained (UFG) Structure Formed by Equal-Channel Angular Pressing in AA7075 on Wear and Friction in Sliding against Steel and Ceramic Counterbodies

Abstract The mechanical characteristics and sliding friction behaviors of AA7075 samples were studied in regard to structural states formed in them by ECAP and depending on the ECAP pass number. In addition, the effect of a counterbody’s material on the tribological characteristics of the samples was investigated by the examples of AISI 52100 steel, alumina Al 2O 3 and silicon nitride Si 3N 4. Vibration acceleration and acoustic emission signals with parameters such as acoustic emission energy and median frequency were used for characterizing the sliding regimes. The structural state and mechanical properties of the ECAPed AA7075 samples significantly affected their wear behaviors in dry sliding. The counterbody material had a significant influence on the formation of a transfer layer and the subsurface deformation of samples. The dynamic behavior of the tribosystem was studied and the relationship between the sliding parameters, vibrometry and acoustic emission signals was established. Keywords: aluminum alloy; sliding friction; wear; severe deformation; structure

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周峰/裴小维

联系电话:18919198811

电子邮箱:zhouf@licp.cas.cn

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周峰/裴小维

联系电话:18919198811

电子邮箱:zhouf@licp.cas.cn

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周峰/裴小维

联系电话:18919198811

电子邮箱:zhouf@licp.cas.cn

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周峰/裴小维

联系电话:18919198811

电子邮箱:zhouf@licp.cas.cn

润滑集