The intricate development of liquid-crystal lubricants necessitates the timely and accurate prediction of their tribological performance in different environments and an assessment of the importance of relevant parameters. In this study, a classification model using Gaussian noise extreme gradient boosting (GNBoost) to predict tribological performance is proposed. Three additives, polysorbate-85, polysorbate-80, and graphene oxide, were selected to fabricate liquid-crystal lubricants. The coefficients of friction of these lubricants were tested in the rotational mode using a universal mechanical tester. A model was designed to predict the coefficient of friction through data augmentation of the initial data. The model parameters were optimized using particle swarm optimization techniques. This study provides an effective example for lubricant performance evaluation and formulation optimization.
周老师: 13321314106
王老师: 17793132604
邮箱号码: lub@licp.cas.cn