This study explores the application effect of the new non-isocyanate polyurethane curing agent on the rapid curing mechanism and bearing characteristics of piles in beach foundations. Through laboratory tests and field tests, the effects of the curing agent on the physical and mechanical properties of sand were systematically analyzed, including compressive strength, shear strength, and elastic modulus, and the effects of water content and cement–sand mass ratio on the properties of sand after curing were investigated. The results show that introducing a curing agent significantly improves the mechanical properties of sand, and the cohesion and internal friction angle increase exponentially with the sand mass ratio. In addition, the increase in water content leads to a decrease in the strength of solidified sand, and the microstructure analysis reveals the change in the bonding effect between the solidified gel and the sand particles. The field static load tests of single piles and pile groups verify the effectiveness of the rapid solidification pile in beach foundations and reveal the significant influence of pile length and pile diameter on the bearing capacity. This study provides a theoretical basis and technical support for the rapid solidification and reinforcement of tidal flat foundations and provides important guidance for related engineering applications. Abstract This study explores the application effect of the new non-isocyanate polyurethane curing agent on the rapid curing mechanism and bearing characteristics of piles in beach foundations. Through laboratory tests and field tests, the effects of the curing agent on the physical and mechanical properties of sand were systematically analyzed, including compressive strength, shear strength, and elastic modulus, and the effects of water content and cement–sand mass ratio on the properties of sand after curing were investigated. The results show that introducing a curing agent significantly improves the mechanical properties of sand, and the cohesion and internal friction angle increase exponentially with the sand mass ratio. In addition, the increase in water content leads to a decrease in the strength of solidified sand, and the microstructure analysis reveals the change in the bonding effect between the solidified gel and the sand particles. The field static load tests of single piles and pile groups verify the effectiveness of the rapid solidification pile in beach foundations and reveal the significant influence of pile length and pile diameter on the bearing capacity. This study provides a theoretical basis and technical support for the rapid solidification and reinforcement of tidal flat foundations and provides important guidance for related engineering applications. Keywords: rapid curing; bearing characteristic; microscopic characteristic test; on-site testing
周老师: 13321314106
王老师: 17793132604
邮箱号码: lub@licp.cas.cn