Material Properties and Friction and Wear Behavior of Ti–18 mass% Nb Alloy after Gas Nitriding and Quenching Process

Abstract We performed a gas nitriding and quenching process (GNQP) on Ti–18 mass% Nb alloy to obtain a high damping capacity and wear resistance. GNQP was performed at temperatures of 1023, 1123, and 1223 K. The outermost surface of the GNQP specimen obtained at 1023 K mainly comprised TiO 2, whereas that at 1223 K mainly comprised TiN. The surface and interior of the specimens exhibited higher hardness at 1223 K than that at 1023 K. Compared to the specimen obtained by solution–quenching (AQ), the unit volume of the α” martensite phase at a depth of 320 μm of the GNQP specimen obtained at 1023 K was similar, and that at 1223 K was higher. Such a difference can be related to the difference in the core hardness of the specimens. The wear amounts of all GNQP specimens were lower than those of the AQ specimen. The coefficient of friction of the GNQP specimen obtained at 1023 K was lower than that obtained at 1223 K. The surface constituent phase and surface roughness exhibited a strong influence on the wear at a load of 500 g. Meanwhile, the nitride layer and damping capacity were considered to be related to the wear at a load of 3000 g. Keywords: titanium alloys; nitriding; martensite; internal friction; wear resistance; coefficient of friction; hardness; lattice parameter

相关文章

  • Tribological Properties of Nitrate Graphite Foils
    [Nikolai S. Morozov, David V. Demchenko, Pavel O. Bukovsky, Anastasiya A. Yakovenko, Vladimir A. Shulyak, Alexandra V. Gracheva, Sergei N. Chebotarev, Irina G. Goryacheva, Viktor V. Avdeev]
  • Study on the Optimization of the Tensile Properties of an Al-Li Alloy Friction Stir-Welding T-Joint
    [Yu Qiu, Yuansong Zeng, Qiang Meng, Wei Guan, Jihong Dong, Huaxia Zhao, Lei Cui, Xuepiao Bai, Mingtao Wang]
  • Microstructure and Wear Resistance of Ni-Cr Alloy Laser Cladding Layer with High Cr Content
    [Pan Chaoyang, Liu Zongde, Shen Yue, Lu Xinjie, Mao Jie, Wang Xinyu, Li Jiaxuan]
  • 成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    润滑集