本发明属于金属材料技术领域,具体涉及一种海洋工程用Cu‑15Ni‑8Sn基合金及其制备方法。本发明的海洋工程用Cu‑15Ni‑8Sn基合金包括下述百分含量的组分:Ni 14%‑16%、Sn 7%‑9%、Zn 0.3%‑2.0%、Si 0.2%‑1.5%、Al0.15%‑2.0%、Mn 0.2%‑1.6%、Ce 0.02%‑0.8%和Y 0.02%‑1.0%,余量为Cu。本发明的海洋工程用Cu‑15Ni‑8Sn基合金铸态组织均匀,枝晶偏析得到明显改善;力学性能和耐腐蚀性能优良,适合海洋工程关键部件使用。
本发明属于金属材料技术领域,具体涉及一种油气开采用多元Cu‑Ni‑Sn基合金及其制备方法。本发明的油气开采用多元Cu‑Ni‑Sn基合金包括下述百分含量的组分:Ni 7‑20%、Sn 4‑12%、Si 0.3‑1.2%、Al 0.2‑3.0%、Nb 0.02‑0.5%、Mn 0.2‑2.0%和Fe 0.2‑2.0%,余量为Cu。本发明的油气开采用多元Cu‑Ni‑Sn基合金的合金成分均匀,铸态微观组织的枝晶间距变小、分布更加均匀且排布方向更趋一致,且力学性能和耐磨性能优良,尤其适合油气开采关键部件使用。
本发明属于有色金属加工领域,尤其涉及一种结晶器、连铸装置及测定固液界面位置的方法,所述结晶器内壁上设置有用于在坯料表面进行标记的标记结构,所述标记结构是凹槽和/或凸起,通过坯料表面形成的标记的数量确定固液界面位置。本发明通过在结晶器内壁上设置用于在坯料表面进行标记的标记结构,在坯料拉出的过程中熔体逐渐凝固,在经过设置的标记结构时,会在坯料表面上形成对应设定标记的凸起和/或凹陷痕迹,依据凸起和/或凹陷痕迹的数量从而直观判断出熔体凝固时所处的位置,进而容易获得可靠的固液界面的位置,可以解决固液界面位置无法测定的难题,有利于进一步优化工艺参数,保证连铸质量和工艺稳定性。
本发明公开一种细化钛材晶粒的复合形变热处理工艺,首先将工业纯钛进行旋压变形,变形量为50~60%,而后进行400℃~500℃到温退火,退火时间为0.5~1 h,而后进行冷轧变形至50%~70%变形量,之后进行500℃到温退火,退火时间为1 h,最终淬火得到阴极辊用钛材。本发明通过对工业纯钛进行“旋压‑退火‑轧制‑退火”复合变形热处理,可以细化晶粒,均匀化晶粒尺寸,因而能获得性能符合要求和质量稳定的阴极辊用钛材。
本发明涉及一种层状梯度铜基复合材料及其制备方法,属于金属基复合材料技术领域。本发明提供了一种层状梯度铜基复合材料的制备方法,包括将含有不同量增强材料和铜基材的混合粉分层装入模具,使混合粉中增强材料的含量自下而上呈梯度分布,经过压制和烧结,得到层状梯度铜基复合材料坯体;将层状梯度铜基复合材料坯体作为自耗电极经真空自耗电弧熔炼法进行熔炼,冷却后,即得。该方法工艺简单,设备为常规设备,可操作性强,且具有较强的可控性,可根据需要调整层数,各层厚度,各层混合粉中增强材料的含量等,从而调整层状梯度铜基复合材料的梯度分布,且熔炼有利于提高过渡层的均匀性,使得层状梯度铜基复合材料过渡均匀,连续性更好。
纳米氧化石墨烯原位强化型铜铬电触头材料的制备方法,先利用改进的Hummers法制备氧化石墨烯纳米片,再将铜粉、铬粉混合均匀,之后对氧化石墨烯纳米片进行超声分散,将混合好的金属粉末转移至超声分散后的氧化石墨烯悬浮液中进行机械搅拌,混合均匀后进行真空冷冻干燥,最后通过真空热压烧结制得。本发明通过在铜铬混合金属粉末中加入自制的氧化石墨烯纳米片进行真空热压烧结,高温下氧化石墨烯转化为还原氧化石墨烯,克服了石墨烯与铜基体亲和力差、界面结合力差、氧化石墨烯导电能力差的问题,而且在烧结过程中石墨烯/金属界面处原位形成了纳米碳化物,提高了电触头材料的综合性能。方法本身工艺简单,能耗少,性能改善显著。
本发明提供了一种连铸过程中固液界面形状获取方法及装置,通过快速移动设置于熔炉内的液面控制棒,使得与熔炉连通的结晶器内的熔体快速回流至熔炉,熔炉内的熔体液面低于结晶器腔体内液面,在杆坯的端部形成当前时刻的固液界面形状。通过此方法获得的固液界面形状可直接观测,同时该操作均发生在封闭的结晶器和熔炉内,从而避免了材料浪费和熔体泄露,降低了操作风险。
本发明涉及一种铜基复合材料及其制备方法,属于铜基材料技术领域。本发明的铜基复合材料包括铜基体和分散在铜基体中的第一陶瓷颗粒、第二陶瓷颗粒和陶瓷晶须;第一陶瓷颗粒为平均粒径<100nm的氧化铝颗粒,占铜基复合材料的质量百分比为0.1~0.5%;第二陶瓷颗粒和陶瓷晶须占铜基复合材料总的质量百分比不超过10%;第二陶瓷颗粒的平均粒径为1μm~50μm。本发明铜基复合材料的铜基体中,平均粒径<1μm的第一陶瓷颗粒、微米级的第二陶瓷颗粒和陶瓷晶须三种增强相相互耦合,利用第一陶瓷颗粒增强基体强度和硬度进而增强铜基体对第二陶瓷颗粒和陶瓷晶须的把持力,最终在保证材料导电率的同时增强铜基复合材料的强度和耐磨性。