As a major load-bearing component of trains, the weld quality of the bogie beam is critical to the safety of railway operations. This study specifically investigates the inertia friction welding process of S355 bogie crosshead tubes, with the aim of improving the weld quality and achieving one-time formation of the crosshead tube and tube seat. The microstructural features and mechanical properties of S355 inertia-welded joints were also compared with the base metal. Research indicates that inertia friction welds have no visible defects, and that the microstructure of the welding seam (WS) consists of granular bainite, acicular ferrite and little pearlite. The thermo-mechanically affected zone (TMAZ) consists of granular bainite bands and ferrite + pearlite bands. The hot work strengthening mechanism of inertia friction welding results in a higher level of hardness for both WS and TMAZ. The tensile property of the welded joints can be compared to the base metal. The yield strength, tensile strength and elongation of the welded joints, respectively, reach 87.5%, 100% and 79.5% of S355. However, the impact toughness of the welds at room temperature is lower than that of the base material, particularly in the TMAZ zone. Conversely, in an environment with a temperature of −40 °C, WS’s impact toughness surpasses that of the parent material. Abstract As a major load-bearing component of trains, the weld quality of the bogie beam is critical to the safety of railway operations. This study specifically investigates the inertia friction welding process of S355 bogie crosshead tubes, with the aim of improving the weld quality and achieving one-time formation of the crosshead tube and tube seat. The microstructural features and mechanical properties of S355 inertia-welded joints were also compared with the base metal. Research indicates that inertia friction welds have no visible defects, and that the microstructure of the welding seam (WS) consists of granular bainite, acicular ferrite and little pearlite. The thermo-mechanically affected zone (TMAZ) consists of granular bainite bands and ferrite + pearlite bands. The hot work strengthening mechanism of inertia friction welding results in a higher level of hardness for both WS and TMAZ. The tensile property of the welded joints can be compared to the base metal. The yield strength, tensile strength and elongation of the welded joints, respectively, reach 87.5%, 100% and 79.5% of S355. However, the impact toughness of the welds at room temperature is lower than that of the base material, particularly in the TMAZ zone. Conversely, in an environment with a temperature of −40 °C, WS’s impact toughness surpasses that of the parent material. Keywords: inertia friction welding; microstructure; mechanical properties
周老师: 13321314106
王老师: 17793132604
邮箱号码: lub@licp.cas.cn